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FOREWORD

This monograph was produced at Virginia Polytechnic Institute in a
pilot program administered by Oklahoma State University under contract to
the NASA Office of Technology Utilization. The program was organized to
determine the feasibility of presenting the results of recent research in
NASA Laboratories, and under NASA contract, in an educational format suitable
as supplementary material in classwork at engineering colleges. The mono-
graph may result from editing single technical reports or synthesizing
several technical reports resulting from NASA's research efforts.

Following the preparation of the monographs, the program includes their
evaluation as educational material in a number of universities throughout
the country. The results of these individual evaluations in the classroom
situation will be used to help determine if this procedure is a satisfactory

way of speeding research results into engineering education.

ABSTRACT

This monograph, based on NASA Report N65-16268 [1], discusses a technique
for the design of minimum energy discrete-data control systems. The "derived"
matrix is used to determine the control sequence that will take the state of
plant from some initial state to a desired final state in N sampling periods.
The cost function stresses the controlling action of any part of the input

sequence and relegates the remainder of the sequence to a supporting role.
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INSTRUCTORS' GUIDE FOR MONOGRAPHS

Educational level of the monograph--Graduate course in optimal control
of discrete data systems.

Prerequisite course material--The students should understand the use of
the "canonical" vectors and sampled-data control systems.

Estimated lecture time required--One hour.

Technical significance--The material presents the use of the "derived"
matrix to determine the minimum-energy control sequence.

New or unusual concepts--The "derived" matrix.

How monographs can best be used--It is suggested that:

(a) A lecture of approximately one hour be given over the monograph

material.
(b) The class be assigned the home problem.
Other reports reviewed by the editor in preparing this Monograph--
Revington, A. M. and Hung, J. C.: Design of Minimum Energy Discrete-Data
Control Systems, Department of Electrical Engineering, The University of

Tennessee, NASA N65-16439.

Note to instructor: A1l uncolored pages of the instructors monograph are

in the copies intended for student use.
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DESIGN OF TIME-WEIGHTED MINIMUM ENERGY
DISCRETE-DATA CONTROL SYSTEMS

Consider an n-th order, linear, time-invariant, sampled-data system.
The state transition equation for the system is

x [(k+1) T1 = o(T)x(kT) + h(T)m [(k+1)T], (1)

where x(kT) 1s the state vector at time kT and T is the sampling period.
Also, »(T) is the nxn state transition matrix, h(T) is the n-dimensional
forcing vector and m(kT) is the control during the interval (k-1)T, kT.

The object of the optimization is to determine the input sequence
m(kT), k=1, 2, ..., N that will take the system from any given initial state
Xy to the origin of the state space X in N sampling periods and at the same

time minimize the cost function

N
E = ild(k) [m(kT)12 , (2)

where the d(k) are positive scalars. When d(k)=1, for all k, this problem is

the minimum energy problem,

Mathematical Development

The canonical vectors [2] for the system of equation (1) are

ry = ¢ H(T) R(T) = o(-iT) B(T), 1 = 1,2,....N, (3)

where N > n. If the system is completely controllable, the first n 13'5 can
be used to form a basis for the n-dimensionalistate space X and any state Xx
in X can be expressed in the form

N

X = I asr; , (4)
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where the a; are real constants.
Kalman and Bertram have shown [4,5] that the state x can be taken to the origin
of the state space by applying the control sequence

m(kT) = -a k =1,2,...,N. (5)

k
If N=n, the solution of the n simultaneous equations of equation (4) is the unique
solution to the linear time-optimal regulator problem.

If N> n, only n of the N r vector are linearly independent and there are
an infinite number of input sequences which will take x to the origin in N sampling
periods. The object of this minimization is to determine which of the infinite
control sequences also minimizes equation (2). If N > n, equation (4) can be

written in the form

C z b, r (6)

or

X Ra + Qb , (7)

where R is an nxn matrix with the n canonical vectors I k=1,...,n, as columns.

Q is an nx(N-n) matrix with the canonical vectors LAOPN PP

Except for a change in sign, the components of a and b represent the input
1

ooy Iy aS columns.

sequence to be applied to the plant. Pre-multiplying equation (7) by R gives
-1, -1

R™'x = a+R 'Qb. (8)

If the definitions
_ o1

€ = Rx (9)
and

H = R 'Q (10)



are substituted into equation (8), a can be expressed in the form

a = c - Hb. - (11)

The nx(N-n) matrix H is.the "derived matrix", which is "derived" from the last
N-n canonical vectors. Equation (9) transforms the vector x of state space X
into the vector c of "canonical vectors space" C. The coordinates of state space
C are the first n canonical vectors r ., k=1,...,n.

The energy consumption can be written in the compact form

E=aba+b

Fb, (12)

where D is the diagonal matrix with elements dkk = d(k), k=1,2,...,n, and F is
the diagonal matrix with elements fkk = d(k+n), k=1,2,...,N-n. Substituting.
equation (11) into equation (12) gives

(c - H)™D(c + Hb) + b'Fb, (13)

m
[{]

or

E = cTDE - 2c

ToHb + bI[H'DH + Flb, (14)

which expresses the energy E as a function of N-n independent variables from b.

In order to minimize E, set 3§-= 0. The condition for a minimum is

[HTDH + Fb = H'Dc , (15)
and 255 positive. Equation (15) can be written in terms of a and b of equation (15),
ab
HDHb + Fb = H'Da + H'DHb. | (16)

From equation (16), the conditions for a minimum reduces to,

Fb = H'Da (17)




and this can be substituted into equation (12) to give the minimal value of energy

E. = QTDQ + BT

a WDa = [a +b'H'] Da. (18)

Equation (17) can also be substituted into equation (11) to give
[I+H WDla = c, (19)

where I is the identity matrix. Now define

B = I+HFHD (20)
and equation (18) can be written in the form
(21)

The existence of B can be shown [2]. Equations (18) and (19) can be combined

to reduce the expression for minimal energy to
E = cDa. (22)

Thus, the condition for minimal energy as well as its value can be expressed in

a compact form. The essential steps of the process are outlined in the following

summary.

Summary

The system state vector x(kT) expressed in terms of the system canonical
vector 7P i=1,2,...,N, and the vectors a and b which represent the input
sequence to be applied to the plant. The "derived" matrix H is used to relate a

to b to the vector ¢ of "canonical vector space" C,
€ = at+tH . (23)

The energy required to take ¢ to the origin is




E = aba+b'fb,

and is minimized when
b = F'Hpa.
The minimal value of energy is

E = -cDa

where

a = 8,
The desired control is

(1), m(2), ..., m(n)] = [-a;, =ap, oo0s -a)] = -2’
Im(n+1), m(n+2), ..o, M(N)] = [-by, -bpy ...y -by_

Design Procedure

1) Determine the transition matrix ¢ and the forcing vector n.
2) Determine the canonical vectors r.

3) Determine the matrices R and Q.

4) Determine the "derived" matrix H.

5) Determine the canonical state vector c.

6) Determine the matrix B using desired values for F and D.

7) Determine a from c and B.

8) Determine b from a.

9) Determine the control m(kT) from the components of a and b.

10) Check energy consumed.

Conclusion

(24)

(25)

(26)

(27)

A procedure has been presented for the time weighted minimum energy discrete-data




control of an n-th order plant. The procedure utilizes the "derived" matrix to
simplify the calculations. The procedure is applicable to systems of any order

and type.

Home Problem

Consider the second-order system

%{%} = s(;+1) ’ (30)

where the input M(s) is the output of a zero order hold with T = 1 second and the
system output is Y(s). Let the state variable be x](t) = y(t) and xz(t) = y(t).
The initial conditions are x](O) = 1.0 and Xg = (0) = 0.0.

(a) Determine the state transition equation.

(b) Determine the control sequence that drives the system to the origin in
four sampling periods and minimizes energy. Let D = F =1 (no time
weighting).

(c) Determine the control sequence that drives the system to the origin in

four sampling periods and minimizes the time-weighted energy. Let

10 30
D = and F = .
0 2 0 4
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~ Solution of Home P

4

(a) Determine the state transition equation. The vector differential equation is
x(t) = A x(t) + g(t) m(t), (31)

where

A [6 1] d g(t) °
0 -1 and g l:]]

The state transition equation is

x(t) = o(t)x(0) + h(t)m(t), (32)
where
1 1-et B IS
o(t) = -t and h(t) = -t .
0 e 1-e

(b)(c) Determination of minimal energy control sequence for N = 4. The canonical
vectors are

_(ek - ek-‘ - -l)
o=k Kk for k = 1,2, ..., 4,

e -e

-0.7182 -3.6706
R =
1.7182 4.6706

The matrix Q is

and

-11.6961 -33.5118
Q =
12.6961 34.5118
and the derived matrix H is
-2.7183 10.107
H =
3.7183  11.107
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The vector ¢ 1s

, 1.583
c = s
~0.582

and the elements of the matrix B are

2 2
(2.7183)% + (10.107)
by = 1+dy, [: ¥

M 22
b d [-(2.7133)(3.7183) _ (10.107)(11.107) |
12 = %2 | i o g
b = d.. |~(2.7183)(3.7183) _ (10.107)(11.107)]
21 1 f  f
o n 22 R
(3,6183)2 + (11.107)2
b,, = 1+d 2 :
22 22 1 fpr

For part (b), (No time weighting) D= F =1 and a = B'.|

0.4875
a = .
0.4275

For the vector b, use b = HT_a_ which is
0.2643
b = :
-0.1794

The control sequence is therefore

¢, which is

m(1) = -0.4875
m(2) = -0.4275
m(3) = -0.2643
m(4) = 0.1794

and the minimum input energy is

E = 0.05226.

!
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For part C, (time weighting),

10 3 0
D = and F = .
0 2 0 4

The vectors a and b are

0. 7073]
a =
= l0.3014

Fo.wss:I
-0.1149

The control sequence for the time weighted case is

o
[]

m(1) = -0.7078
m(2) = -0.3014
m(3) = -0.1056
m(4) = 0.1149

The difference in the required input energy should be pointed out. If
time-optimal control were used, only two sampling periods would have been

required but the input energy would be much greater.
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system inputs
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Fig. 1. System output responses
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Fig. 2. System inputs



